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10.4 Families of Continuous Random Variables

Theorem 10.34 states that any nonnegative function f(x) whose
integral over the interval (−∞,+∞) equals 1 can be regarded as
a probability density function of a random variable. In real-world
applications, however, special mathematical forms naturally show
up. In this section, we introduce a couple families of continuous
random variables that frequently appear in practical applications.
The probability densities of the members of each family all have the
same mathematical form but differ only in one or more parameters.

10.4.1 (Continuous) Uniform Distribution

Definition 10.44.

• The (continuous) uniform distribution on an interval [a, b], is
denoted by uniform([a, b]) or U([a, b]) or simply U(a, b).

• Expressions that are synonymous with “X is a uniform ran-
dom variable” are

(a) “X is uniformly distributed”,

(b) “X has a uniform distribution”,

(c) and “X has a uniform density”.

To specify the support (range) of X, we may also append
“on/over the interval (a, b)”.
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• This family is characterized by pdf of the form

fX (x) =

{
0, x < a, x > b

1
b−a , a ≤ x ≤ b

• The constants a and b are referred to as the parameters of the
uniform distribution.

10.45. Important Interpretation: A continuous uniform random
variable X on the interval [a, b] is just as likely to be “near” any
value in [a, b] as any other value.

10.46. In MATLAB,

(a) use X = a+(b-a)*rand or X = random(’Uniform’,a,b) to
generate X ∼ U(a, b) ,

(b) use pdf(’Uniform’,x,a,b) and cdf(’Uniform’,x,a,b) to
evaluate the pdf and cdf at x, respectively.

Exercise 10.47. Show that FX (x) =


0, x < a,
x−a
b−a , a ≤ x ≤ b,

1, x > b.
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�Fig. 3.5 The pdf and cdf for the uniform random variable.
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�Fig. 3.6 The pdf and cdf of a Gaussian random variable.

Gaussian (or normal) random variable This is a continuous random variable that
is described by the following pdf:

fx(x) = 1√
2πσ 2

exp

{
− (x− μ)2

2σ 2

}
, (3.16)

where μ and σ 2 are two parameters whose meaning is described later. It is usually denoted
as N (μ, σ 2). Figure 3.6 shows sketches of the pdf and cdf of a Gaussian random variable.

The Gaussian random variable is the most important and frequently encountered ran-
dom variable in communications. This is because thermal noise, which is the major source
of noise in communication systems, has a Gaussian distribution. Gaussian noise and the
Gaussian pdf are discussed in more depth at the end of this chapter.

The problems explore other pdf models. Some of these arise when a random variable
is passed through a nonlinearity. How to determine the pdf of the random variable in this
case is discussed next.

Funct ions of a random variable A function of a random variable y = g(x) is itself a
random variable. From the definition, the cdf of y can be written as

Fy(y) = P(ω ∈ � : g(x(ω)) ≤ y). (3.17)

Figure 24: The pdf and cdf for the uniform random variable. [16, Fig. 3.5]
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Example 10.48 (F2011). Suppose X is uniformly distributed on
the interval (1, 2). (X ∼ U(1, 2).)

(a) Plot the pdf fX(x) of X.

(b) Plot the cdf FX(x) of X.

10.49. The uniform distribution provides a probability model for
selecting a point at random from the interval [a, b].

• Use with caution to model a quantity that is known to vary
randomly between a and b but about which little else is known.

Example 10.50. [9, Ex. 4.1 p. 140-141] In coherent radio com-
munications, the phase difference between the transmitter and the
receiver, denoted by Θ, is modeled as having a uniform density on
[−π, π].

(a) P [Θ ≤ 0] = 1
2

(b) P
[
Θ ≤ π

2

]
= 3

4

Exercise 10.51. Show that whenX ∼ U(a, b), EX = a+b
2 , VarX =

(b−a)
2

12 , and E
[
X2
]

= 1
3

(
b2 + ab+ a2

)
.
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10.4.2 Gaussian Distribution

10.52. This is the most widely used model for the distribution
of a random variable. When you have many independent random
variables, a fundamental result called the central limit theorem
(CLT) (informally) says that the sum (or the average) of them can
often be approximated by normal distribution.

109 3.5 The Gaussian random variable and process�
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�Fig. 3.14 (a) A sample skeletal muscle (emg) signal, and (b) its histogram and pdf fits.

1 =
[∫ ∞

−∞
fx(x)dx

]2

=
[∫ ∞

−∞
K1e−ax2

dx

]2

= K2
1

∫ ∞

x=−∞
e−ax2

dx
∫ ∞

y=−∞
e−ay2

dy

= K2
1

∫ ∞

x=−∞

∫ ∞

y=−∞
e−a(x2+y2)dxdy. (3.103)

Figure 25: Electrical activity
of a skeletal muscle: (a) A
sample skeletal muscle (emg)
signal, and (b) its histogram
and pdf fits. [16, Fig. 3.14]

Definition 10.53. Gaussian random variables:

• Often called normal random variables because they occur so
frequently in practice.
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• The Gaussian distribution is denoted by N
(
m,σ2

)
. It has

two parameters: m ∈ R and σ > 0.

◦ Caution: The second argument in N
(
m,σ2

)
is σ2 (not

σ).

◦ Several references use µ instead of m.

• This family is characterized by pdf of the form

fX (x) =
1√
2πσ

e−
1
2(

x−m
σ )

2

.
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Gaussian (or normal) random variable This is a continuous random variable that
is described by the following pdf:

fx(x) = 1√
2πσ 2

exp

{
− (x− μ)2

2σ 2

}
, (3.16)

where μ and σ 2 are two parameters whose meaning is described later. It is usually denoted
as N (μ, σ 2). Figure 3.6 shows sketches of the pdf and cdf of a Gaussian random variable.

The Gaussian random variable is the most important and frequently encountered ran-
dom variable in communications. This is because thermal noise, which is the major source
of noise in communication systems, has a Gaussian distribution. Gaussian noise and the
Gaussian pdf are discussed in more depth at the end of this chapter.

The problems explore other pdf models. Some of these arise when a random variable
is passed through a nonlinearity. How to determine the pdf of the random variable in this
case is discussed next.

Funct ions of a random variable A function of a random variable y = g(x) is itself a
random variable. From the definition, the cdf of y can be written as

Fy(y) = P(ω ∈ � : g(x(ω)) ≤ y). (3.17)

Figure 26: The pdf and cdf of N (µ, σ2). [16, Fig. 3.6]

◦ In Excel, use NORMDIST(x,m,σ,FALSE).
In MATLAB, use normpdf(x,m,σ) or pdf(’Normal’,x,m,σ).

◦ Figure 26 and Figure 28 display the famous bell-shaped
graphs of the Gaussian pdf. This curves are also called
the normal curves.

• In MATLAB, use X = random(’Normal’,m,σ) or X = σ*randn
+ m to generate X ∼ N (m,σ2).

• FX(x) has no closed-form expression. However, see 10.60.

◦ In MATLAB, use normcdf(x,m,σ) or cdf(’Normal’,x,m,σ).

◦ In Excel, use NORMDIST(x,m,σ,TRUE).

10.54. EX = m and VarX = σ2.

153



111 3.5 The Gaussian random variable and process�

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f x
(x

)

σx = 1

σx = 2

σx = 5

�Fig. 3.15 Plots of the zero-mean Gaussian pdf for different values of standard deviation, σx.

Table 3.1 Influence of σx on different quantities

Range (±kσx) k = 1 k = 2 k = 3 k = 4

P(mx − kσx < x ≤ mx + kσx) 0.683 0.955 0.997 0.999
Error probability 10−3 10−4 10−6 10−8

Distance from the mean 3.09 3.72 4.75 5.61

of the pdf are ignorable. Indeed when communication systems are considered later it is the

presence of these tails that results in bit errors. The probabilities are on the order of 10−3–

10−12, very small, but still significant in terms of system performance. It is of interest to

see how far, in terms of σx, one must be from the mean value to have the different levels of

error probabilities. As shall be seen in later chapters this translates to the required SNR to

achieve a specified bit error probability. This is also shown in Table 3.1.

Having considered the single (or univariate) Gaussian random variable, we turn our

attention to the case of two jointly Gaussian random variables (or the bivariate case). Again

they are described by their joint pdf which, in general, is an exponential whose exponent

is a quadratic in the two variables, i.e., fx,y(x, y) = Ke(ax2+bx+cxy+dy+ey2+f ), where the con-

stants K, a, b, c, d, e, and f are chosen to satisfy the basic properties of a valid joint pdf,

namely being always nonnegative (≥ 0), having unit volume, and also that the marginal

pdfs, fx(x) = ∫∞−∞ fx,y(x, y)dy and fy(y) = ∫∞−∞ fx,y(x, y)dx, are valid. Written in standard

form the joint pdf is

Figure 27: Plots of the zero-
mean Gaussian pdf for differ-
ent values of standard devia-
tion, σX . [16, Fig. 3.15]

10.55. Important probabilities:
P [|X − µ| < σ] = 0.6827;
P [|X − µ| > σ] = 0.3173;
P [|X − µ| > 2σ] = 0.0455;
P [|X − µ| < 2σ] = 0.9545

These values are illustrated in Figure 28. We will see these
numbers again in Example 10.61.
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Figure 28: Probability
density function of
X ∼ N (µ, σ2) . The pur-
ple areas correspond to
P [|X − µ| < σ] = 0.6827 and
P [|X − µ| < 2σ] = 0.9545,
respectively.

Example 10.56. Figure 29 compares several deviation scores and
the normal distribution.

(a) Standard scores have a mean of zero and a standard deviation
of 1.0.

(b) Scholastic Aptitude Test scores have a mean of 500 and a
standard deviation of 100.
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6.1 Normal Probability Distributions
The domain of bell-shaped distributions is the set
of all real numbers.

6.2 The Standard Normal Distribution
To work with normal distributions, we need the
standard score.

6.3 Applications of Normal Distributions
The normal distribution can help us to determine
probabilities.

6.4 Notation
The z notation is critical in the use of normal
distributions.

6.5 Normal Approximation of the
Binomial
Binomial probabilities can be estimated by using
a normal distribution.

6 Normal Probability Distributions

6.1 Normal Probability Distributions 

Intelligence Scores
The normal probability distribution is considered the single most important proba-
bility distribution. An unlimited number of continuous random variables have either a normal

or an approximately normal distribution.

We are all familiar with IQ (intelligence quotient) scores and/or SAT (Scholastic Aptitude Test)
scores. IQ scores have a mean of 100 and a standard deviation of 16. SAT scores have a mean of

500 with a standard deviation of 100. But did you know that these continuous random variables

also follow a normal distribution?

Figure A, pictures the comparison of sev-

eral deviation scores and the normal distri-

bution: Standard scores have a mean of

zero and a standard deviation of 1.0.

Scholastic Aptitude Test scores have a

mean of 500 and a standard deviation of

100.

Binet Intelligence Scale scores have a

mean of 100 and a standard deviation of 16.

In each case there are 34 percent of the

scores between the mean and one standard

deviation, 14 percent between one and two

standard deviations, and 2 percent beyond

two standard deviations.

Source: Beck, Applying Psychology: Critical and Creative Thinking, Figure 6.2 “Pictures the Comparison of Several Deviation
Scores and the Normal Distribution,” © 1992 Prentice-Hall, Inc. Reproduced by permission of Pearson Education, Inc.
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Figure 29: Comparison of Several Devi-
ation Scores and the Normal Distribu-
tion

(c) Binet Intelligence Scale47 scores have a mean of 100 and a
standard deviation of 16.

In each case there are 34 percent of the scores between the mean
and one standard deviation, 14 percent between one and two stan-
dard deviations, and 2 percent beyond two standard deviations.
[Source: Beck, Applying Psychology: Critical and Creative Think-
ing.]

10.57. The area under a normal probability density function be-
yond 3σ from the mean is quite small. In fact,

P [|X − µ| < 3σ] ≈ 0.9973.

Therefore, approximately 99.73% of the probability of a normal
distribution is within the interval (µ− 3σ, µ+ 3σ).

47Alfred Binet, who devised the first general aptitude test at the beginning of the 20th
century, defined intelligence as the ability to make adaptations. The general purpose of the
test was to determine which children in Paris could benefit from school. Binets test, like its
subsequent revisions, consists of a series of progressively more difficult tasks that children of
different ages can successfully complete. A child who can solve problems typically solved by
children at a particular age level is said to have that mental age. For example, if a child can
successfully do the same tasks that an average 8-year-old can do, he or she is said to have a
mental age of 8. The intelligence quotient, or IQ, is defined by the formula:

IQ = 100 × (Mental Age/Chronological Age)

There has been a great deal of controversy in recent years over what intelligence tests measure.
Many of the test items depend on either language or other specific cultural experiences for
correct answers. Nevertheless, such tests can rather effectively predict school success. If
school requires language and the tests measure language ability at a particular point of time
in a childs life, then the test is a better-than-chance predictor of school performance.
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Definition 10.58. N (0, 1) is the standard Gaussian (normal)
distribution.

• We usually use Z to denote standard Gaussian RV.

• In Excel, use NORMSINV(RAND()).
In MATLAB, use randn.

• The standard normal cdf is denoted by Φ(z).

◦ It inherits all properties of cdf.

◦ Moreover, note that Φ(−z) = 1− Φ(z).

10.59. Relationship48 between N (0, 1) and N (m,σ2).

(a) An arbitrary Gaussian random variable with mean m and
variance σ2 can be represented as σZ+m, where Z ∼ N (0, 1).

This relationship can be used to generate general Gaussian
RV from standard Gaussian RV.

(b) If X ∼ N
(
m,σ2

)
, the random variable

Z =
X −m
σ

is a standard normal random variable. That is, Z ∼ N (0, 1).

• Creating a new random variable by this transformation
is referred to as standardizing.

• The standardized variable is called “standard score” or
“z-score”.

10.60. It is impossible to express the integral of a Gaussian PDF
between non-infinite limits (e.g., (20)) as a function that appears
on most scientific calculators.

48To be proved in 10.81.
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• An old but still popular technique to find integrals of the
Gaussian PDF is to refer to tables that have been obtained
by numerical integration.

◦ An example of such table is Table 4, which lists Φ(z) for
many values of positive z.

◦ For X ∼ N
(
m,σ2

)
, we can show that the CDF of X can

be calculated from

FX(x) = Φ

(
x−m
σ

)
.

Example 10.61. Suppose Z ∼ N (0, 1). Evaluate the following
probabilities.

(a) P [−1 ≤ Z ≤ 1]

(b) P [−2 ≤ Z ≤ 2]

Example 10.62. Suppose X ∼ N (1, 2). Find P [1 ≤ X ≤ 2].

Example 10.63. Signal Detection: Assume that in the detection
of a digital signal, the background noise follows a normal distri-
bution with a mean of 0 volt and standard deviation of 0.45 volt.
The system assumes a digital 1 has been transmitted when the
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z (z) z (z) z (z) z (z) z (z) z (z)

0.00 0.5000 0.50 0.6915 1.00 0.8413 1.50 0.9332 2.00 0.97725 2.50 0.99379

0.01 0.5040 0.51 0.6950 1.01 0.8438 1.51 0.9345 2.01 0.97778 2.51 0.99396

0.02 0.5080 0.52 0.6985 1.02 0.8461 1.52 0.9357 2.02 0.97831 2.52 0.99413

0.03 0.5120 0.53 0.7019 1.03 0.8485 1.53 0.9370 2.03 0.97882 2.53 0.99430

0.04 0.5160 0.54 0.7054 1.04 0.8508 1.54 0.9382 2.04 0.97932 2.54 0.99446

0.05 0.5199 0.55 0.7088 1.05 0.8531 1.55 0.9394 2.05 0.97982 2.55 0.99461

0.06 0.5239 0.56 0.7123 1.06 0.8554 1.56 0.9406 2.06 0.98030 2.56 0.99477

0.07 0.5279 0.57 0.7157 1.07 0.8577 1.57 0.9418 2.07 0.98077 2.57 0.99492

0.08 0.5319 0.58 0.7190 1.08 0.8599 1.58 0.9429 2.08 0.98124 2.58 0.99506

0.09 0.5359 0.59 0.7224 1.09 0.8621 1.59 0.9441 2.09 0.98169 2.59 0.99520

0.10 0.5398 0.60 0.7257 1.10 0.8643 1.60 0.9452 2.10 0.98214 2.60 0.99534

0.11 0.5438 0.61 0.7291 1.11 0.8665 1.61 0.9463 2.11 0.98257 2.61 0.99547

0.12 0.5478 0.62 0.7324 1.12 0.8686 1.62 0.9474 2.12 0.98300 2.62 0.99560

0.13 0.5517 0.63 0.7357 1.13 0.8708 1.63 0.9484 2.13 0.98341 2.63 0.99573

0.14 0.5557 0.64 0.7389 1.14 0.8729 1.64 0.9495 2.14 0.98382 2.64 0.99585

0.15 0.5596 0.65 0.7422 1.15 0.8749 1.65 0.9505 2.15 0.98422 2.65 0.99598

0.16 0.5636 0.66 0.7454 1.16 0.8770 1.66 0.9515 2.16 0.98461 2.66 0.99609

0.17 0.5675 0.67 0.7486 1.17 0.8790 1.67 0.9525 2.17 0.98500 2.67 0.99621

0.18 0.5714 0.68 0.7517 1.18 0.8810 1.68 0.9535 2.18 0.98537 2.68 0.99632

0.19 0.5753 0.69 0.7549 1.19 0.8830 1.69 0.9545 2.19 0.98574 2.69 0.99643

0.20 0.5793 0.70 0.7580 1.20 0.8849 1.70 0.9554 2.20 0.98610 2.70 0.99653

0.21 0.5832 0.71 0.7611 1.21 0.8869 1.71 0.9564 2.21 0.98645 2.71 0.99664

0.22 0.5871 0.72 0.7642 1.22 0.8888 1.72 0.9573 2.22 0.98679 2.72 0.99674

0.23 0.5910 0.73 0.7673 1.23 0.8907 1.73 0.9582 2.23 0.98713 2.73 0.99683

0.24 0.5948 0.74 0.7704 1.24 0.8925 1.74 0.9591 2.24 0.98745 2.74 0.99693

0.25 0.5987 0.75 0.7734 1.25 0.8944 1.75 0.9599 2.25 0.98778 2.75 0.99702

0.26 0.6026 0.76 0.7764 1.26 0.8962 1.76 0.9608 2.26 0.98809 2.76 0.99711

0.27 0.6064 0.77 0.7794 1.27 0.8980 1.77 0.9616 2.27 0.98840 2.77 0.99720

0.28 0.6103 0.78 0.7823 1.28 0.8997 1.78 0.9625 2.28 0.98870 2.78 0.99728

0.29 0.6141 0.79 0.7852 1.29 0.9015 1.79 0.9633 2.29 0.98899 2.79 0.99736

0.30 0.6179 0.80 0.7881 1.30 0.9032 1.80 0.9641 2.30 0.98928 2.80 0.99744

0.31 0.6217 0.81 0.7910 1.31 0.9049 1.81 0.9649 2.31 0.98956 2.81 0.99752

0.32 0.6255 0.82 0.7939 1.32 0.9066 1.82 0.9656 2.32 0.98983 2.82 0.99760

0.33 0.6293 0.83 0.7967 1.33 0.9082 1.83 0.9664 2.33 0.99010 2.83 0.99767

0.34 0.6331 0.84 0.7995 1.34 0.9099 1.84 0.9671 2.34 0.99036 2.84 0.99774

0.35 0.6368 0.85 0.8023 1.35 0.9115 1.85 0.9678 2.35 0.99061 2.85 0.99781

0.36 0.6406 0.86 0.8051 1.36 0.9131 1.86 0.9686 2.36 0.99086 2.86 0.99788

0.37 0.6443 0.87 0.8078 1.37 0.9147 1.87 0.9693 2.37 0.99111 2.87 0.99795

0.38 0.6480 0.88 0.8106 1.38 0.9162 1.88 0.9699 2.38 0.99134 2.88 0.99801

0.39 0.6517 0.89 0.8133 1.39 0.9177 1.89 0.9706 2.39 0.99158 2.89 0.99807

0.40 0.6554 0.90 0.8159 1.40 0.9192 1.90 0.9713 2.40 0.99180 2.90 0.99813

0.41 0.6591 0.91 0.8186 1.41 0.9207 1.91 0.9719 2.41 0.99202 2.91 0.99819

0.42 0.6628 0.92 0.8212 1.42 0.9222 1.92 0.9726 2.42 0.99224 2.92 0.99825

0.43 0.6664 0.93 0.8238 1.43 0.9236 1.93 0.9732 2.43 0.99245 2.93 0.99831

0.44 0.6700 0.94 0.8264 1.44 0.9251 1.94 0.9738 2.44 0.99266 2.94 0.99836

0.45 0.6736 0.95 0.8289 1.45 0.9265 1.95 0.9744 2.45 0.99286 2.95 0.99841

0.46 0.6772 0.96 0.8315 1.46 0.9279 1.96 0.9750 2.46 0.99305 2.96 0.99846

0.47 0.6808 0.97 0.8340 1.47 0.9292 1.97 0.9756 2.47 0.99324 2.97 0.99851

0.48 0.6844 0.98 0.8365 1.48 0.9306 1.98 0.9761 2.48 0.99343 2.98 0.99856

0.49 0.6879 0.99 0.8389 1.49 0.9319 1.99 0.9767 2.49 0.99361 2.99 0.99861

Table 4: The standard normal CDF: Φ(z)
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voltage exceeds 0.9. (Otherwise, it assumes a digital 0 has been
transmitted)

What is the probability of detecting a digital 1 when none was
sent? [Montgomery and Runger, 2013, Ex. 4-15]

10.64. Q-function : Q (z) =
∞∫
z

1√
2π
e−

x2

2 dx corresponds to P [Z > z]

where Z ∼ N (0, 1); that is Q (z) is the probability of the “tail” of
N (0, 1). The Q function is then a complementary cdf (ccdf).
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Figure 30: Q-function

(a) Q is a decreasing function with Q (0) = 1
2 .

(b) Q (−z) = 1−Q (z) = Φ(z)

(c) Table 5 lists the values of Q(z) for z between 3 to 5.

• For z between 0 to 3, we use Q(z) = 1− Φ(z).

• For z ≥ 5, the value of Q(z) is extremely small. We may
assume Q(z) ≈ 0.

10.65. Error function (MATLAB): erf (z) = 2√
π

z∫
0

e−x
2

dx =

1− 2Q
(√

2z
)

(a) It is an odd function of z.

(b) For z ≥ 0, it corresponds to P [|X| < z] where X ∼ N
(
0, 1

2

)
.

(c) lim
z→∞

erf (z) = 1
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z Q(z) z Q(z) z Q(z) z Q(z) z Q(z)

3.00 1.35E‐03 3.40 3.37E‐04 3.80 7.23E‐05 4.20 1.33E‐05 4.60 2.11E‐06

3.01 1.31E‐03 3.41 3.25E‐04 3.81 6.95E‐05 4.21 1.28E‐05 4.61 2.01E‐06

3.02 1.26E‐03 3.42 3.13E‐04 3.82 6.67E‐05 4.22 1.22E‐05 4.62 1.92E‐06

3.03 1.22E‐03 3.43 3.02E‐04 3.83 6.41E‐05 4.23 1.17E‐05 4.63 1.83E‐06

3.04 1.18E‐03 3.44 2.91E‐04 3.84 6.15E‐05 4.24 1.12E‐05 4.64 1.74E‐06

3.05 1.14E‐03 3.45 2.80E‐04 3.85 5.91E‐05 4.25 1.07E‐05 4.65 1.66E‐06

3.06 1.11E‐03 3.46 2.70E‐04 3.86 5.67E‐05 4.26 1.02E‐05 4.66 1.58E‐06

3.07 1.07E‐03 3.47 2.60E‐04 3.87 5.44E‐05 4.27 9.77E‐06 4.67 1.51E‐06

3.08 1.04E‐03 3.48 2.51E‐04 3.88 5.22E‐05 4.28 9.34E‐06 4.68 1.43E‐06

3.09 1.00E‐03 3.49 2.42E‐04 3.89 5.01E‐05 4.29 8.93E‐06 4.69 1.37E‐06

3.10 9.68E‐04 3.50 2.33E‐04 3.90 4.81E‐05 4.30 8.54E‐06 4.70 1.30E‐06

3.11 9.35E‐04 3.51 2.24E‐04 3.91 4.61E‐05 4.31 8.16E‐06 4.71 1.24E‐06

3.12 9.04E‐04 3.52 2.16E‐04 3.92 4.43E‐05 4.32 7.80E‐06 4.72 1.18E‐06

3.13 8.74E‐04 3.53 2.08E‐04 3.93 4.25E‐05 4.33 7.46E‐06 4.73 1.12E‐06

3.14 8.45E‐04 3.54 2.00E‐04 3.94 4.07E‐05 4.34 7.12E‐06 4.74 1.07E‐06

3.15 8.16E‐04 3.55 1.93E‐04 3.95 3.91E‐05 4.35 6.81E‐06 4.75 1.02E‐06

3.16 7.89E‐04 3.56 1.85E‐04 3.96 3.75E‐05 4.36 6.50E‐06 4.76 9.68E‐07

3.17 7.62E‐04 3.57 1.78E‐04 3.97 3.59E‐05 4.37 6.21E‐06 4.77 9.21E‐07

3.18 7.36E‐04 3.58 1.72E‐04 3.98 3.45E‐05 4.38 5.93E‐06 4.78 8.76E‐07

3.19 7.11E‐04 3.59 1.65E‐04 3.99 3.30E‐05 4.39 5.67E‐06 4.79 8.34E‐07

3.20 6.87E‐04 3.60 1.59E‐04 4.00 3.17E‐05 4.40 5.41E‐06 4.80 7.93E‐07

3.21 6.64E‐04 3.61 1.53E‐04 4.01 3.04E‐05 4.41 5.17E‐06 4.81 7.55E‐07

3.22 6.41E‐04 3.62 1.47E‐04 4.02 2.91E‐05 4.42 4.94E‐06 4.82 7.18E‐07

3.23 6.19E‐04 3.63 1.42E‐04 4.03 2.79E‐05 4.43 4.71E‐06 4.83 6.83E‐07

3.24 5.98E‐04 3.64 1.36E‐04 4.04 2.67E‐05 4.44 4.50E‐06 4.84 6.49E‐07

3.25 5.77E‐04 3.65 1.31E‐04 4.05 2.56E‐05 4.45 4.29E‐06 4.85 6.17E‐07

3.26 5.57E‐04 3.66 1.26E‐04 4.06 2.45E‐05 4.46 4.10E‐06 4.86 5.87E‐07

3.27 5.38E‐04 3.67 1.21E‐04 4.07 2.35E‐05 4.47 3.91E‐06 4.87 5.58E‐07

3.28 5.19E‐04 3.68 1.17E‐04 4.08 2.25E‐05 4.48 3.73E‐06 4.88 5.30E‐07

3.29 5.01E‐04 3.69 1.12E‐04 4.09 2.16E‐05 4.49 3.56E‐06 4.89 5.04E‐07

3.30 4.83E‐04 3.70 1.08E‐04 4.10 2.07E‐05 4.50 3.40E‐06 4.90 4.79E‐07

3.31 4.66E‐04 3.71 1.04E‐04 4.11 1.98E‐05 4.51 3.24E‐06 4.91 4.55E‐07

3.32 4.50E‐04 3.72 9.96E‐05 4.12 1.89E‐05 4.52 3.09E‐06 4.92 4.33E‐07

3.33 4.34E‐04 3.73 9.57E‐05 4.13 1.81E‐05 4.53 2.95E‐06 4.93 4.11E‐07

3.34 4.19E‐04 3.74 9.20E‐05 4.14 1.74E‐05 4.54 2.81E‐06 4.94 3.91E‐07

3.35 4.04E‐04 3.75 8.84E‐05 4.15 1.66E‐05 4.55 2.68E‐06 4.95 3.71E‐07

3.36 3.90E‐04 3.76 8.50E‐05 4.16 1.59E‐05 4.56 2.56E‐06 4.96 3.52E‐07

3.37 3.76E‐04 3.77 8.16E‐05 4.17 1.52E‐05 4.57 2.44E‐06 4.97 3.35E‐07

3.38 3.62E‐04 3.78 7.84E‐05 4.18 1.46E‐05 4.58 2.32E‐06 4.98 3.18E‐07

3.39 3.49E‐04 3.79 7.53E‐05 4.19 1.39E‐05 4.59 2.22E‐06 4.99 3.02E‐07

Table 5: The standard normal complementary CDF: Q(z)
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(d) erf (−z) = −erf (z)

(e) Φ(x) = 1
2

(
1 + erf

(
x√
(2)

))
= 1

2erfc
(
− x√

2

)
(f) The complementary error function:

erfc (z) = 1− erf (z) = 2Q
(√

2z
)

= 2√
π

∫∞
z e−x

2

dx

f) ( )( ) ( ) ( )( ) ( )
( )( )

( ) ( )
2

21
2

f x x

a

dQ f x g x dx Q f x g x dx e f x g t dt dx
dxπ

− ⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫ ∫ ∫ . 

g) Approximation:  

i) ( )
( )

2

2
2

1 1
21

z

Q z e
a z a z b π
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π
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2

1 11
22
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x x π
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27) Moment and central moment 
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• 2 2 2Var 4 2X 4μ σ σ⎡ ⎤ = +⎣ ⎦ . 

28) For ( )0,1N  and ,  1k ≥ ( ) ( )
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29) Error function (Matlab): ( ) (2

0

2 1 2 2
z

xerf z e dx Q z
π
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P X z⎡ <⎣ ⎤⎦  where X ~ 10,
2

⎛ ⎞
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⎝ ⎠
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b)  ( ) (erf z erf z− = − )
Figure 31: erf-function and Q-function

10.4.3 Exponential Distribution

Definition 10.66. The exponential distribution is denoted by
E (λ).

(a) λ > 0 is a parameter of the distribution, often called the rate
parameter.

(b) Characterized by

• fX (x) =

{
λe−λx, x > 0,
0, x ≤ 0

• FX (x) =

{
1− e−λx, x > 0,
0, x ≤ 0
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(c) MATLAB:

• X = exprnd(1/λ) or random(’exp’,1/λ)

• fX(x) = exppdf(x,1/λ) or pdf(’exp’,x,1/λ)

• FX(x) = expcdf(x,1/λ) or cdf(’exp’,x,1/λ)

10.67. The exponential distribution is intimately related to the
Poisson process. In fact, the random variable X that equals the
“distance” (or length or duration) between (any) successive events
of a Poisson process with parameter λ is an exponential random
variable with the same parameter.

Example 10.68. Exponential distribution is often used as a prob-
ability model for the (waiting) time until the next “rare” event
occurs.

• time elapsed until the next earthquake in a certain region

• decay time of a radioactive particle

• time between independent events such as arrivals at a service
facility or arrivals of customers in a shop.

• duration of a cell-phone call

• time it takes a computer network to transmit a message from
one node to another.

10.69. In Example 10.37, we showed that EX = 1
λ .

Example 10.70. Suppose X ∼ E(λ), find P [1 < X < 2].

10.71. Survival-, survivor-, or reliability-function:
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Exercise 10.72. Exponential random variable as a continuous
version of geometric random variable: Suppose X ∼ E (λ). Show
that bXc ∼ G0(e

−λ) and dXe ∼ G1(e
−λ)

Example 10.73. Phone Company A charges $0.15 per minute
for telephone calls. For any fraction of a minute at the end of
a call, they charge for a full minute. Phone Company B also
charges $0.15 per minute. However, Phone Company B calculates
its charge based on the exact duration of a call. If T , the duration
of a call in minutes, is exponential with parameter λ = 1/3, what
are the expected revenues per call E [RA] and E [RB] for companies
A and B?

Solution : First, note that ET = 1
λ = 3. Hence,

E [RB] = E [0.15× T ] = 0.15ET = $0.45.

and
E [RA] = E [0.15× dT e] = 0.15E dT e .

Now, recall, from Exercise 10.72, that dT e ∼ G1

(
e−λ
)
. Hence,

E dT e = 1
1−e−λ ≈ 3.53. Therefore,

E [RA] = 0.15E dT e ≈ 0.5292.

10.74. Memoryless property : The exponential r.v. is the only
continuous49 r.v. on [0,∞) that satisfies the memoryless property:

P [X > s+ x |X > s ] = P [X > x]

for all x > 0 and all s > 0 [18, p. 157–159]. In words, the future
is independent of the past. The fact that it hasn’t happened yet,
tells us nothing about how much longer it will take before it does
happen.

• Imagining that the exponentially distributed random variable
X represents the lifetime of an item, the residual life of an item
has the same exponential distribution as the original lifetime,
regardless of how long the item has been already in use. In
other words, there is no deterioration/degradation over time.
If it is still currently working after 20 years of use, then today,
its condition is “just like new”.

49For discrete random variable, geometric random variables satisfy the memoryless property.
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• In particular, suppose we define the setB+x to be {x+ b : b ∈ B}.
For any x > 0 and set B ⊂ [0,∞), we have

P [X ∈ B + x|X > x] = P [X ∈ B]

because

P [X ∈ B + x]

P [X > x]
=

∫
B+x λe

−λtdt

e−λx
τ=t−x

=

∫
B λe

−λ(τ+x)dτ

e−λx
.

Example 10.75. The exponential distribution is often used in
reliability studies as the model for the time until failure of a de-
vice. For example, the lifetime of a semiconductor chip might be
modeled as an exponential random variable with a mean of 40,000
hours.

The lack of memory property of the exponential distribution
implies that the device does not wear out. That is, regardless of
how long the device has been operating, the probability of a failure
in the next 1000 hours is the same as the probability of a failure
in the first 1000 hours of operation.

10.76. The lifetime L of a device with failures caused by random
shocks might be appropriately modeled as an exponential random
variable. However, the lifetime L of a device that suffers slow
mechanical wear, such as bearing wear, is better modeled by other
distributions such as the Weibull distribution.

10.77. Summary:

X ∼ Support SX fX (x) =

Uniform U(a, b) (a, b)

{
1
b−a , a < x < b,

0, otherwise.

Normal (Gaussian) N (m,σ2) R 1√
2πσ

e−
1
2(x−mσ )

2

Exponential E(λ) (0,∞)

{
λe−λx, x > 0,
0, x ≤ 0

Table 6: Examples of probability density functions. Here, λ, σ > 0.
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